Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses.
نویسندگان
چکیده
Normal development of the visual system in infants relies on clear images being projected onto the retina, which can be disrupted by lens opacity caused by congenital cataract. This disruption, if uncorrected in early life, results in amblyopia (permanently decreased vision even after removal of the cataract). Doctors are able to prevent amblyopia by removing the cataract during the first several weeks of life, but this surgery risks a host of complications, which can be equally visually disabling. Here, we investigated the feasibility of focusing light noninvasively through highly scattering cataractous lenses to stimulate the retina, thereby preventing amblyopia. This approach would allow the cataractous lens removal surgery to be delayed and hence greatly reduce the risk of complications from early surgery. Employing a wavefront shaping technique named time-reversed ultrasonically encoded optical focusing in reflection mode, we focused 532-nm light through a highly scattering ex vivo adult human cataractous lens. This work demonstrates a potential clinical application of wavefront shaping techniques.
منابع مشابه
Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light.
Focusing light deep inside living tissue has not been achieved despite its promise to play a central role in biomedical imaging, optical manipulation and therapy. To address this challenge, internal-guide-star-based wavefront engineering techniques--for example, time-reversed ultrasonically encoded (TRUE) optical focusing--were developed. The speeds of these techniques, however, were limited to...
متن کاملTime-reversed ultrasonically encoded optical focusing into scattering media
Light focusing plays a central role in biomedical imaging, manipulation, and therapy. In scattering media, direct light focusing becomes infeasible beyond one transport mean free path. All previous methods1-3 to overcome this diffusion limit lack a practical internal "guide star."4 Here we proposed and experimentally validated a novel concept, called Time-Reversed Ultrasonically Encoded (TRUE) ...
متن کاملTime-reversed ultrasonically encoded optical focusing into tissue-mimicking media with thickness up to 70 mean free paths.
In turbid media such as biological tissue, multiple scattering hinders direct light focusing at depths beyond one transport mean free path. As a solution to this problem, time-reversed ultrasonically encoded (TRUE) optical focusing is proposed based on ultrasonic encoding of diffused laser light and optical time reversal. In TRUE focusing, a laser beam of long coherence length illuminates a tur...
متن کاملEnergy enhancement in time-reversed ultrasonically encoded optical focusing using a photorefractive polymer.
Time-reversed ultrasonically encoded (TRUE) optical focusing achieves light focusing into scattering media beyond one transport mean free path, which is desirable in biomedical optics. However, the focused optical energy needs to be increased for broad applications. Here, we report the use of a photorefractive polymer (PRP) as the phase conjugate mirror in TRUE optical focusing. The PRP boosted...
متن کاملUltrasound-mediated Optical Imaging and Focusing in Scattering Media
1.4.3 Ultrasound-modulated optical tomography (UOT) and time-reversed ultrasonically encoded (TRUE) optical focusing ..
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical optics
دوره 23 1 شماره
صفحات -
تاریخ انتشار 2018